Enantioselective Conjugate Addition of 2-Acetyl Azaarenes to β , β -Disubstituted Nitroalkene for the Construction of All-Carbon Quaternary Stereocenters

Hongli Ma, Lei Xie, Zhenhua Zhang,[©] Lin-gang Wu, Bin Fu,^{*©} and Zhaohai Qin^{*}

Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China

Supporting Information

ABSTRACT: The first highly enantioselective conjugate addition of 2-acetyl azaarenes to α -substituted- β -nitroacrylates was successfully realized under mild conditions by a Ni(II)-bisoxazoline complex, providing the desired adducts bearing an all-carbon quaternary stereocenter in high yield with excellent

enantioselectivity. The products obtained in this system could be readily converted into optically active $\beta^{2,2}$ -amino esters, succinates, lactones, and lactams.

A romatic N-heterocycles (azaarenes), including pyridine, pyrimidine, quinoline, oxazole, thiazole, and so on, are ubiquitous structural motifs in pharmaceuticals and other biologically active compounds.¹ It has been reported that the majority of all known active pharmaceutical ingredients (APIS) contain an aromatic N-heterocycle.² On the other hand, approximately half of all APIs are chiral compounds. Therefore, the development of efficient methodologies for incorporating an aromatic N-heterocycle in chiral molecules is highly valuable and desirable in medicinal chemistry and organic synthesis.

All-carbon quaternary stereocenters are widely present in a number of natural products, therapeutic agents, and other functional molecules.³ Over the past several decades, studies on the construction of all-carbon guaternary stereocenters with high levels of stereocontrol have been a longstanding and challenging topic owing to the high steric hindrance, and hence become a research focus in organic synthesis.⁴ So far, there are a plethora of methods explored for this purpose, such as alkylation,⁵ allylic alkylation,⁶ conjugate addition,⁷ rearrange-ment,⁸ desymmetrization,⁹ and so on.¹⁰ Among them, asymmetric conjugate addition (ACA) of carbon-based nucleophiles with suitable unsaturated carbonyl acceptors is one straightforward and efficient strategy for the construction of quaternary carbon stereocenters. In the past few years, $\beta_{,\beta}$ disubstituted nitroalkene as a Michael acceptor has received increasing attention for attaining this goal, because the resulting products could be transformed to β -amino acid derivatives, lactones, and related bioactive compounds bearing quaternary carbon stereocenters.¹¹ To date, only a few examples concerning α -phenyl β -nitroacrylate have been reported by Xiao,^{12a,b} Jia,^{12c} Wennemers,^{12d} Gong,^{12e} and other groups,¹ affording efficient approaches to the construction of heteroquaternary or all-carbon quaternary stereocenters. In addition, $\beta_{,\beta}$ -disubstituted unsaturated carbonyl compounds bearing a β_{-} CF₃ group have also been employed to the conjugate addition for the construction of trifluoromethylated all-carbon quaternary stereocenters by several groups.¹³ Despite these notable

advances, the method for the formation of quaternary carbon stereocenters, particularly acyclic all-carbon quaternary stereocenters, is still limited,¹⁴ and hence remains highly desirable and challenging.

We have recently found a highly enantioselective conjugate addition between a 2-acetyl azaarene as a nucleophile and a β -CF₃- β -disubstituted nitroalkene by employing a Ni(acac)₂-BOX complex.¹⁵ Inspired by this success, we envisioned that α phenyl- β -nitroacrylate as a Michael acceptor could also proceed smoothly with 2-acetyl azaarene to deliver the enantioselective adducts containing an all-carbon quaternary stereocenter (Scheme 1). To the best of our knowledge, the method for

Scheme 1. Strategy for the Formation of All-Carbon Quaternary Stereocenters

incorporating various aromatic N-heterocycles and an allcarbon quaternary stereocenter in an organic molecule is relatively unexplored, and of great significance in medicinal and organic chemistry. Herein, we report the first asymmetric conjugate addition of various 2-acetyl azaarenes to α substituted β -nitroacrylates catalyzed by a Ni(II)-bisoxazoline complex, in which the resulting products could be readily converted into versatile optically active compounds bearing an all-carbon quaternary stereocenter such as pyrrolidine, succinate, lactone, and lactams.

We started our study from the reaction of commercially available 2-acetyl pyridine 1a with α -phenyl- β -nitroacrylate methyl ester 2a in *i*-PrOH at 0 °C using 10 mol % of chiral Ni(acac)₂-bisoxazoline complexes based on our previous

Received:
 April 27, 2017

 Published:
 June 30, 2017

Table 1. Optimization of Reaction Conditions⁴

	$1a$ $R^{1}O_{2}C$ NO_{2}						
	\sum_{R}^{O}	$ \begin{array}{c} & & \\ & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ $	$R = Ph$ $R = Bn$ $R = i-Pr$ $R = t-Bu$ Ph^{Im}	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	$ \begin{array}{c} H \\ H \\ S \\ S \\ H \\ H \\ L3 \end{array} \begin{array}{c} 0 \\ H \\ Ph \end{array} \begin{array}{c} 0 \\ S \\ S \\ Ph \end{array} \begin{array}{c} 0 \\ S \\ Ph \end{array} \begin{array}{c} 0 \\ S \\ Ph \end{array} \begin{array}{c} 0 \\ S \\$	N N N Ph	
entry	L	\mathbb{R}^1	solvent	$T(^{\circ}C)$	time (h)	yield ^b (%)	ee ^c (%)
1	Lla	Me	<i>i</i> -PrOH	0	24	90 (3aa)	84
2	L1b	Me	<i>i</i> -PrOH	0	24	78 (3aa)	36
3	L1c	Me	<i>i</i> -PrOH	0	24	72 (3aa)	14
4	L1d	Me	<i>i</i> -PrOH	0	24	88 (3aa)	0
5	L2	Me	<i>i</i> -PrOH	0	24	59 (3aa)	0
6	L3	Me	<i>i</i> -PrOH	0	24	51 (3aa)	83
7	L4	Me	<i>i</i> -PrOH	0	24	57 (3aa)	2
8	L1a	Bn	<i>i</i> -PrOH	0	24	92 (3ab)	97
9	Lla	<i>i</i> -Pr	<i>i</i> -PrOH	0	24	90 (3ac)	97
10	Lla	<i>t</i> -Bu	<i>i</i> -PrOH	0	24	93 (3ad)	98
11	Lla	<i>t</i> -Bu	MeOH	0	24	55 (3ad)	84
12	Lla	<i>t</i> -Bu	EtOH	0	24	90 (3ad)	95
13	Lla	<i>t</i> -Bu	CH_2Cl_2	0	24	89 (3ad)	92
14	Lla	<i>t</i> -Bu	toluene	0	24	84 (3ad)	97
15	Lla	<i>t</i> -Bu	Et_2O	0	24	89 (3ad)	98
16	Lla	t-Bu	<i>i</i> -PrOH	-10	48	93 (3ad)	99
17	Lla	t-Bu	<i>i</i> -PrOH	rt	12	95 (3ad)	97
18 ^d	Lla	<i>t</i> -Bu	<i>i</i> -PrOH	rt	24	94 (3ad)	96
19 ^e	Lla	t-B11	i-PrOH	rt	48	85 (3ad)	92

^{*a*}Reaction conditions unless noted otherwise: **1a** (0.20 mmol), **2** (0.30 mmol), **L** (0.024 mmol), Ni(acac)₂ (0.020 mmol) in *i*-PrOH (2 mL) under nitrogen at 0 °C for 24 h. ^{*b*}Isolated yield. ^{*c*}Determined by HPLC using a chiralcel OD-H column. ^{*d*}5 mol % catalyst loading. ^{*e*}2.5 mol % catalyst loading.

work.¹⁵ The results are summarized in Table 1. Evans' ligands were first screened (entries 1-4), and (S,S)-Ph-BOX (L1a) afforded the best yield and enantioselectivity (entry 1, 90% yield and 84% ee). Other bisoxazoline ligands L2, L3, and L4 were also examined and gave lower yields or ee values (entries 5-7). Subsequently, the effect of the ester group on the reaction was tested. When replacing the methyl group of α phenyl- β -nitroacrylate (2a) with more sterically hindered benzyl, iso-propyl, and tert-butyl groups, the enantioselectivity increased gradually while high reactivity was still maintained (entries 8-10); particularly, 2d with a tert-butyl group afforded the highest ee value (98%). In addition, other Lewis acids including Ni(ClO₄)₂·6H₂O, Ni(OTf)₂, Cu(OTf)₂, Ni(OAc)₂· $4H_2O_2$, and $Zn(OTf)_2$ were examined, and most of them did not promote the reaction except that Ni(OAc)₂·4H₂O offered an excellent enantioselectivity, but moderate yield (entry 13, 45% yield and 98% ee; see the Supporting Information, Table S1).¹⁶ A simple survey of solvent demonstrated that high to excellent enantioselectivities were achieved for the screened solvents (entries 11-15, 84-98% ee); however, i-PrOH was finally chosen as the optimal solvent in terms of the reactivity and safety. Moreover, the effect of temperature and catalyst loading on the reaction was tested. When the reaction proceeded at -10 °C for 48 h or room temperature for 12 h, 99% ee and 97% ee values were obtained, respectively, indicating that the decreased temperature could result in a little

improvement in enantioselectivity but at the expense of the reactivity (entries 16 and 9 vs entry 17). When the catalyst loading was reduced to 5 and 2.5 mol %, a longer reaction time was needed for ensuring high yields while the enantioselectivity dropped slightly (entries 18 and 19, 96% and 92% *ee*). Consequently, the reaction would be carried out in *i*-PrOH at room temperature using 10 mol % of Ni(acac)₂ and 12 mol % of L1a.

Under optimal reaction conditions, the scope of nitroacrylate was next explored, and the results are shown in Table 2. First, a series of different substituted phenyl β -nitroacrylates (2e-2j) were applied to the reaction with 2-acetyl pyridine. Both the yields and enantioselectivities are generally excellent for nitroacrylate substrates bearing either electron-withdrawing or electron-donating groups on the phenyl ring (entries 1-6, 93-97% yield, 97–99% ee). Subsequently, α -heteroaryl-substituted β -nitroacrylates were used in this reaction, which also afforded excellent results (entries 7 and 8, 92% yield and 95% ee, 96% yield and 96% ee, respectively). Notably, the reaction of styrylsubstituted nitroacrylate (2m) with 1a proceeded for only 4 h to give the adduct 3am in 95% yield with 95% ee (entry 9), exhibiting higher reactivity than α -aryl-substituted nitroalkenes. Furthermore, different substituted 2-acetyl-pyridine derivatives 1b, 1c, and 1d were subjected to this reaction condition. 2-Acetyl 5-Me-pyridine 1b and 2-acetyl 5-Br-pyridine 1c were well tolerant with the reaction (entries 10-11); however, no

Table 2. Substrate Scope of Nitroacrylate^a

		$\int_{-\infty}^{0} + \frac{BuO_2C}{R} - \frac{NO_2}{R}$	$12 \text{ mol}\% \text{ L1a}$ $10 \text{ mol}\% \text{ Ni}(\text{acac})_2 \rightarrow R' \frac{1}{4}$ <i>i</i> -PrOH R'	N NO ₂	
	1a R' = H; 1c R' = 5-B	1b R' = 5-Me 2 r; 1d R' = 6-Br		3	
entry	1	R	time (h)	yield ^b (%)	ee ^c (%)
1	1a	$4-MeC_{6}H_{4}(2e)$	12	97 (3ae)	97
2	1a	4-MeOC ₆ H ₄ (2f)	12	95 (3af)	98
3	1a	$4-FC_{6}H_{4}(2g)$	12	95 (3ag)	98
4	1a	$4-BrC_{6}H_{4}(2h)$	12	93 (3ah)	99 (R)
5	1a	4-CF ₃ C ₆ H ₄ (2i)	12	94 (3 ai)	97
6	1a	$4-NO_2C_6H_4(2j)$	12	97 (3aj)	97
7	1a	2-furyl (2 k)	12	92 (3ak)	95
8	1a	2-thienyl (21)	12	96 (3al)	96
9	1a	styryl (2m)	4	95 (3am)	95
10	1b	Ph (2d)	12	90 (3bd)	93
11	1c	Ph (2d)	12	94 (3cd)	98
12	1d	Ph (2d)	12		
13 ^d	1a	Me (2n)	12(48)	95(93) (3an)	66(80)
14 ^d	1a	$n-C_7H_{15}$ (20)	12(48)	93(89) (3ao)	43(75)
15	1a	cyclohexyl (2p)	72	84 (3 ap)	94

^{*a*}Reaction conditions: unless stated otherwise, **1** (0.20 mmol), **2** (0.30 mmol), **L1a** (0.024 mmol), Ni $(acac)_2$ (0.020 mmol) in *i*-PrOH (2 mL) under nitrogen at rt. ^{*b*}Isolated yield. ^{*c*}Determined by HPLC using a chiral column. ^{*d*}The numbers in paretheses were obtained when reactions were conducted at 0 °C.

Table 3. Substrate Scope of Azaarenes^a

	Ar = X	$\stackrel{12}{} NO_2 \xrightarrow{12 \text{ mol}\% \text{ L1a}} 10 \text{ mol}\% \text{ Ni(aca}$ <i>i</i> -PrOH	$(x)_{2} \xrightarrow{(N)_{1} \times X} \xrightarrow{(N)_{1} \times$	Bu IO ₂	
	1 20,	2 k , or 2 i	3	L	
entry	1 (azaarenes)	R	time (h)	yield ^b (%)	ee ^c (%)
1	2-pyrazinyl (1e)	Ph (2d)	36	85 (3ed)	99
2	2-pyrimidinyl (1f)	Ph (2d)	48	86 (3fd)	93
3	2-quinolinyl (1g)	Ph (2d)	12	97 (3gd)	99
4	2-quinoxalinyl (1h)	Ph (2d)	12	90 (3hd)	98
5	2-oxazolyl (1i)	Ph (2d)	12	86 (3id)	98
6	2-thiazolyl (1j)	Ph (2d)	12	96 (3jd)	>99
7	2-benzothiazolyl (1k)	Ph (2d)	12	92 (3kd)	99
8	N-Me-2-imidazolyl (11)	Ph (2d)	12	92 (3ld)	>99
9	N-Bn-2-benzimidazolyl (1m)	Ph (2d)	48	85 (3md)	99
10	N-Me-2-imidazolyl (1n)	2-furyl (2k)	48	85 (3lk)	>99
11	N-Me-2-imidazolyl (1n)	2-thienyl (21)	48	88 (3l l)	>99
(n			(0.020 I) · · · P.C		$, , b_{T-1}$

^aReaction conditions: 1 (0.20 mmol), 2 (0.30 mmol), L1a (0.024 mmol), Ni(acac)₂ (0.020 mmol) in *i*-PrOH (2 mL) under nitrogen at rt. ^bIsolated yield. ^cDetermined by HPLC using a chiral column.

reaction occurred with 2-acetyl 6-Br-pyridine 1d (entry 12). This result may be attributed to that the key intermediate metal enolate could not be formed because the pyridine N atom coordinating to the Ni(II) center was retarded by the adjacent 6-Br atom. Unfortunately, methyl- and *n*-heptyl-substituted substrates 2n and 2o furnished only moderate enantioselectivities (66% *ee* and 43% *ee*). Lowering the reaction temperature to 0 °C led to an obvious improvement of the enantioselectivity (80% *ee* and 75% *ee*), albeit with a decrease of the reactivity (entries 13 and 14). When using the bulky cyclohexyl-substituted nitroacrylate 2p, the reaction was prolonged to 72 h at rt and afforded a 94% *ee* of product 3ap with 84% yield (entry 15). These results suggested that a steric effect could be

mainly responsible for the excellent enantioselectivity of the reaction.

To explore the generality of the catalytic asymmetric conjugate addition, we next investigated other available 2-acetyl azaarenes. As shown in Table 3, six-membered N-heterocycles containing, for example, 2-pyrazinyl, 2-pyrimidinyl, 2-quinolinyl, and 2-quinoxalinyl groups (1e-1h) were well compatible with the reaction, delivering the desired adducts in high yields with excellent enantioselectivities (entries 1-4, 85-97% yield and 93-99% *ee*). To our excitement, in the case of five-membered N-heterocycles containing 1i-1o, both the high yields and excellent enantioselectivities were also achieved (entries 5-9, 85-96% yield and 98 to >99% *ee*). It is worth noting that *N*-methyl-2-acetylimidazole 11 and *N*-benzyl-2-

Scheme 2. Transformations of the Products

acetyl benzimidazole **1m** were very competent substrates in terms of the enantioselectivity (entries 8 and 9). Furthermore, when *N*-Me-2-acetyl imidazole reacted with α -2-furyl- and 2-thienyl-substituted β -nitroacrylates (**2k** and **2l**), a nearly perfect level of the enantioselectivity was achieved¹⁷ (entries 10 and 11, >99% *ee* values).

To show the practicality of the present reaction, a gram-scale experiment was tested. As shown in Scheme 2 (eq 1), the catalytic asymmetric conjugate addition of 1a with 2d was accomplished at room temperature within 60 h in 92% yield with a 90% *ee* value by using only a 2.0 mol % of catalyst loading. Optically pure 3ad (>99% *ee*) could be obtained in 80% yield after a single recrystallization from methanol.

Significantly, product 3, containing multiple functional groups, such as NO₂, C=O, and CO₂R, could be converted into many useful intermediates for the synthesis of β -amino ester, succinates, lactams, and other biologically active compounds, as shown in Scheme 2. For example, 3ad was treated by a one-pot procedure of reduction/ring-closure process (Fe/AcOH), which afforded pyrroline derivative 4 (eq 2).¹⁴ The reduction of product **3ad** with NaBH₄ in MeOH produced the diastereoisomers 5, whose major isomer was separated by column chromatography, followed by treatment with TFA, which led to γ -lactone 6 (eq 3). Notably, the acyl imidazole moiety is easily transformed into a variety of carbonyl-containing derivatives such as aldehydes, ketones, and esters.^{18,17c} As expected, 2-acetyl imidazole 3ld was treated sequentially with MeOTf and then DBU in methanol in onepot to give the succinate ester 7 bearing an all-carbon

quaternary stereocenter in 92% yield and >99% *ee* (Scheme 2, eq 4).¹⁹ Succinates are valuable chiral building blocks for the synthesis of β -amino acids, peptidomimics, and other bioactive derivatives.²⁰ To our knowledge, the approach to the succinates bearing an all-carbon quaternary stereocenter has been rarely reported.²¹ Subsequently, treatment of 7 with NaBH₄/NiCl₂· 6H₂O in EtOH afforded γ -lactam 8, or reduction of 7 with DIBAL-H led to δ -nitro alcohol 9 in 85% yield with >99% *ee* (Scheme 2, eq 5). Moreover, the selective reduction of 7 and 9 would generate the corresponding amino ester 11 and amino alcohol 10 according to a literature procedure.²² In general, these transformations could lead to many biologically active compounds bearing an all-carbon quaternary stereocenter with retention of the enantiopurity including amino esters, succinates, γ -lactams, and others.

The absolute configuration of **3ah** was determined to be *R* based on X-ray crystallographic analysis.²³ The configurations of the other adducts were assigned by analogy. A plausible asymmetric induction model was proposed. As shown in Figure 1, 2-acetyl pyridine coordinates with the Ni(II)/BOX complex to form enolate; subsequently, the enolate preferentially approaches β -nitroacrylate from the *Si*-face to form the major *R*-configured product **3ah** because the *Re*-face attack is unfavorable due to the steric hindrance between the phenyl group of ligand **L1a** and β -nitroacrylate. Considering that the excellent enantioselectivities achieved by various aryl and cyclohexyl vs methyl and heptyl group nitroacrylates, as well as $-CO_2^{t}Bu$ vs $-CO_2Me$, CO_2Bn , $CO_2^{t}Pr$ substrates, the steric effect could play a much more important role in the

Figure 1. Plausible asymmetric induction model and the X-ray structure of 3ah.

stereoselectivity-determining step. The formation of enolates was easily confirmed by the following control experiments (Scheme 3): (1) Acetophenone did not occur with α -phenyl β -

Scheme 3. Control Experiments

nitroacrylate 2d under the same condition. (2) The reaction of 2-acetyl pyridine with 2-phenyl nitro alkene proceed smoothly to give the desired adduct 12 bearing a tertiary stereocenter in 92% yield with 94% ee. (3) When E-nitroacrylate 2n' was reacted with 2-acetyl pyridine under the same condition, product 3an' with an inverse configuration was afforded in 41% yield and 57% ee. The nitro group is required in this transformation, which had been confirmed and elucidated in our previous work.¹⁵ For example, when other substrates with -CO2Et or -CN substituents were employed in this reaction, no reaction was observed (eqs 4 and 5). In addition, based on some reports in the literatures,²⁴ the counterion acac could coordinate to the Ni(II) center and form complex intermediates in a solution, providing a well-defined chiral environment. The detailed mechanism remains to be further studied.

In summary, we have developed a highly enantioselective conjugate addition of 2-acetyl azaarenes to α -substituted β nitroacrylates. The reaction was conducted at room temperature using a chiral Ni(II)-BOX complex, providing a variety of aromatic N-heterocycle-containing compounds bearing an allcarbon quaternary stereocenter in high yields with excellent enantioselectivities (up to >99% *ee*). The method features high yield and excellent enantioselectivity, broad substrate scope, inexpensive catalysts, and mild conditions. More importantly, the present method provides an easy approach to optically active $\beta^{2,2}$ -amino ester, pyrrolidine, succinate, γ -lactam, and γ lactone derivatives bearing all-carbon quaternary stereocenters, exhibiting versatile synthetic potentials. Further extension of this methodology in organic synthesis is currently underway.

EXPERIMENTAL SECTION

General. ¹H NMR spectra were recorded on a 300 MHz spectrometer in CDCl₃, and ¹³C NMR spectra were recorded on a 75 MHz spectrometer using tetramethylsilane (TMS) as internal standard. HRMS data were obtained by electrospray ionization (ESI) sources with a time-of-flight mass analyzer. Optical rotations were measured on a PerkinElmer 341 LC polarimeter. The enantiomeric excesses of (R)- and (S)-enantiomers were determined by HPLC analysis over a chiral column with a UV detector. The absolute configuration of the major enantiomer was assigned by X-ray diffraction analysis. Solvents were purified and dried by standard procedures.

General Procedure for the Catalytic Conjugate Addition Reaction. To a Schlenk tube were added ligand L1a (0.024 mmol), Ni(acac)₂ (0.020 mmol), and *i*-PrOH (2 mL) sequentially under a nitrogen atmosphere. After the solution was stirred at room temperature for 1 h, 2-acetyl azaarene 1 (0.20 mmol) was added, and after stirring for 20 min, α -substituted- β -nitroacrylate 2 (0.30 mmol) was finally added. The reaction proceeded at 0 °C or rt for 4– 72 h, and then the solvent was removed under vacuum to give the crude product, which was purified by flash column chromatography on silica gel (eluted with ethyl acetate/petroleum ether (1/10–1/5, v/v) to yield the desired adduct.

Procedure of the Gram-Scale Experiment. To a Schlenk tube were added ligand L1a (0.24 mmol), Ni(acac)₂ (0.2 mmol), and *i*-PrOH (20 mL) under a nitrogen atmosphere. After the solution was stirred for 1 h at room temperature, 2-acetyl pyridine 1a (10 mmol) was added, the resulting mixture was stirred for another 30 min, *α*-phenyl-*β*-nitroacrylate 2d (15 mmol) was finally added, and the mixture was stirred for 60 h at room temperature. The solvent was evaporated under vacuum, H₂O (30 mL) was added, and extracted with CH₂Cl₂ (20 mL × 3). The organic layer was combined and dried over anhydrous Na₂SO₄, and then concentrated to give the crude product, which was purified by flash column chromatography on silica gel (eluted with ethyl acetate/petroleum ether (1/10, v/v) to yield the adduct 3ad (3.40 g, 92% yield, 90% *ee*). After one single recrystallization from MeOH, 3ad (2.96 g) was achieved in 80% yield with >99% *ee*.

(*R*)-*Methyl 2-Nitromethyl-4-oxo-2-phenyl-4-(pyridin-2-yl) Butanoate* (**3aa**). White solid, Mp: 126–127 °C, 69 mg, 90% yield; $[\alpha]_{D}^{2D}$ = +76.0 (*c* 1.0, CH₂Cl₂); 84% *ee*, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 90:10, 1.0 mL/min, 254 nm; *t* (minor) = 16.00 min, *t* (major) = 22.20 min]; ¹H NMR (300 MHz, CDCl₃) δ 8.73 (d, *J* = 3.3 Hz, 1H), 8.04 (d, *J* = 7.7 Hz, 1H), 7.85 (t, *J* = 7.4 Hz, 1H), 7.64–7.28 (m, 6H), 5.36 (ABd, *J* = 12.4 Hz, 1H), 5.35 (ABd, *J* = 12.4 Hz, 1H), 4.69 (d, *J* = 19.4 Hz, 1H), 4.25 (d, *J* = 19.3 Hz, 1H), 3.71 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 198.8, 172.1, 152.7, 149.1, 136.9, 129.1, 128.4, 127.7, 126.0, 121.8, 79.5, 53.0, 50.8, 40.3; ESI-HRMS Calcd for C₁₇H₁₇N₂O₅ [M + H]⁺: 329.1132, Found: 329.1127.

(*R*)-Benzyl 2-Nitromethyl-4-oxo-2-phenyl-4-(pyridin-2-yl) Butanoate (**3ab**). Colorless oil, 74 mg, 92% yield. $[\alpha]_D^{20} = +56.8$ (c 0.75, CH₂Cl₂); 97% *ee*, determined by HPLC analysis [Daicel Chiralcel OD-

H column, *n*-hexane/*i*-PrOH = 85:15, 1.0 mL/min, 254 nm; *t* (minor) = 13.52 min, *t* (major) = 17.47 min]; ¹H NMR (300 MHz, CDCl₃) δ 8.70 (dq, *J* = 4.7, 0.9 Hz, 1H), 7.98 (dt, *J* = 7.9, 1.0 Hz, 1H), 7.83 (td, *J* = 7.7, 1.7 Hz, 1H), 7.49 (ddd, *J* = 7.5, 4.8, 1.3 Hz, 1H), 7.44–7.30 (m, SH), 7.26–7.16 (m, 3H), 7.14–7.09 (m, 2H), 5.39 (s, 2H), 5.23–5.08 (m, 2H), 4.67 (d, *J* = 19.4 Hz, 1H), 4.30 (d, *J* = 19.4 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 198.8, 171.4, 152.7, 149.0, 136.9, 136.8, 135.0, 129.0, 128.4, 128.3, 128.1, 127.6, 126.0, 121.8, 79.5, 67.6, 51.0, 40.3; ESI-HRMS Calcd for C₂₃H₂₁N₂O₅ [M + H]⁺: 405.1445, Found: 405.1444.

(*R*)-*iso*-Propyl 2-Nitromethyl-4-oxo-2-phenyl-4-(pyridin-2-yl) Butanoate (**3ac**). Colorless oil, 64 mg, 90% yield. $[\alpha]_D^{20} = +69.0$ (c 1.0, CH₂Cl₂); 97% *ee*, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 90:10, 1.0 mL/min, 254 nm; *t* (minor) = 7.79 min, *t* (major) = 10.08 min]; ¹H NMR (300 MHz, CDCl₃) δ 8.78–8.68 (m, 1H), 8.07–7.99 (m, 1H), 7.84 (td, *J* = 7.7, 1.7 Hz, 1H), 7.54–7.42 (m, 3H), 7.42–7.28 (m, 3H), 5.38 (s, 2H), 5.08 (hept, *J* = 6.2 Hz, 1H), 4.61 (d, *J* = 19.3 Hz, 1H), 4.27 (d, *J* = 19.3 Hz, 1H), 1.17–1.08 (m, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 198.8, 170.9, 152.8, 149.1, 137.2, 136.9, 128.9, 128.2, 127.6, 125.9, 121.6, 79.6, 69.7, 50.9, 40.2, 21.3, 21.2; ESI-HRMS Calcd for C₁₉H₂₁N₂O₅ [M + H]⁺: 357.1445, Found: 357.1444.

(*R*)-tert-Butyl 2-Nitromethyl-4-oxo-2-phenyl-4-(pyridin-2-yl) Butanoate (**3ad**). White solid, Mp: 88–89 °C, 70 mg, 95% yield. $[\alpha]_D^{20} = +76.0 (c 1.0, CH_2Cl_2); 97\%$ ee, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 90:10, 1.0 mL/ min, 254 nm; t (minor) = 8.24 min, t (major) = 12.69 min]; ¹H NMR (300 MHz, CDCl₃) δ 8.69 (d, *J* = 4.4 Hz, 1H), 8.03 (d, *J* = 7.8 Hz, 1H), 7.82 (dd, *J* = 10.9, 4.5 Hz, 1H), 7.46 (d, *J* = 7.3 Hz, 3H), 7.42– 7.28 (m, 3H), 5.37 (ABd, *J* = 12.4 Hz, 1H), 5.33 (ABd, *J* = 12.4 Hz, 1H), 4.55 (d, *J* = 19.2 Hz, 1H), 4.25 (d, *J* = 19.2 Hz, 1H), 1.36 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 198.8, 170.1, 152.8, 149.0, 137.5, 136.8, 128.8, 128.0, 127.5, 125.8, 121.5, 82.5, 79.6, 51.3, 40.2, 27.4; ESI-HRMS Calcd for C₂₀H₂₃N₂O₅ [M + H]⁺: 371.1601, Found: 371.1599.

(*R*)-tert-Butyl 2-Nitromethyl-4-oxo-2-tolyl-4-(pyridin-2-yl) Butanoate (**3ae**). White solid, Mp: 104–105 °C, 75 mg, 97% yield. $[\alpha]_{D}^{20}$ = +84.7 (*c* 0.45, CH₂Cl₂); 97% *ee*, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 90:10, 1.0 mL/min, 254 nm; *t* (major) = 6.02 min, *t* (minor) = 8.16 min]; ¹H NMR (300 MHz, CDCl₃) δ 8.73–8.70 (m, 1H), 8.05 (dt, *J* = 7.9, 1.1 Hz, 1H), 7.84 (td, *J* = 7.7, 1.7 Hz, 1H), 7.52–7.48 (m, 1H), 7.39–7.28 (m, 2H), 7.23–7.10 (m, 2H), 5.43–5.22 (m, 2H), 4.53 (d, *J* = 19.3 Hz, 1H), 4.22 (dd, *J* = 19.3, 0.7 Hz, 1H), 2.33 (s, 3H), 1.37 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 198.9, 170.4, 153.0, 149.0, 137.8, 136.9, 134.5, 129.6, 127.5, 125.7, 121.6, 82.5, 79.8, 51.1, 40.3, 27.5, 20.9; ESI-HRMS Calcd for C₂₁H₂₅N₂O₅ [M + H]⁺: 385.1757, Found: 385.1754.

(*R*)-tert-Butyl⁷ 2-Nitromethyl⁴-oxo-2-(*p*-methoxylphenyl)-4-(*pyridin-2-yl*) Butanoate (**3af**). White solid, Mp: 131–132 °C, 76 mg, 95% yield. $[\alpha]_{D0}^{20} = +89.0$ (*c* 0.83, CH₂Cl₂); 98% *ee*, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 90:10, 1.0 mL/min, 254 nm; *t* (minor) = 8.26 min, *t* (major) = 10.26 min]; ¹H NMR (300 MHz, CDCl₃) δ 8.76–8.68 (m, 1H), 8.09–7.99 (m, 1H), 7.90–7.79 (m, 1H), 7.56–7.44 (m, 1H), 7.43–7.32 (m, 2H), 6.95–6.82 (m, 2H), 5.40–5.20 (m, 2H), 4.50 (d, *J* = 19.2 Hz, 1H), 4.21 (dd, *J* = 19.2, 0.7 Hz, 1H), 3.79 (d, *J* = 0.7 Hz, 3H), 1.36 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 198.9, 170.4, 159.2, 153.0, 149.1, 136.9, 129.5, 127.5, 127.1, 121.6, 114.2, 82.5, 79.8, 55.2, 50.8, 40.3, 27.5; ESI-HRMS Calcd for C₂₁H₂₅N₂O₆ [M + H]⁺: 401.1707, Found: 401.1704.

(*R*)-tert-Butyl 2-Nitromethyl-4-oxo-2-(p-fluorophenyl)-4-(pyridin-2-yl) Butanoate (**3ag**). White solid, Mp: 101–102 °C, 74 mg, 95% yield. $[\alpha]_{D}^{20} = +66.7$ (c 0.45, CH₂Cl₂); 98% ee, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 90:10, 1.0 mL/min, 254 nm; t (minor) = 6.35 min, t (major) = 8.08 min]; ¹H NMR (300 MHz, CDCl₃) δ 8.72–8.69 (m, 1H), 8.05 (dt, *J* = 7.9, 1.0 Hz, 1H), 7.85 (td, *J* = 7.7, 1.7 Hz, 1H), 7.55–7.40 (m, 3H), 7.14–7.01 (m, 2H), 5.40–5.24 (m, 2H), 4.50 (d, *J* = 19.2 Hz, 1H), 4.22 (dd, *J* = 19.2, 0.8 Hz, 1H), 1.36 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 198.6, 170.1, 162.3 (d, *J*_{C-F} = 247.9 Hz), 152.8, 149.1, 136.9, 133.4 (d, *J*_{C-F} = 3.4 Hz), 127.7 (d, *J*_{C-F} = 8.2 Hz), 127.6, 121.6, 115.8 (d, *J*_{C-F} = 21.5

Hz), 82.9, 79.4, 50.9, 40.3, 27.5; ESI-HRMS Calcd for $C_{20}H_{22}FN_2O_5$ $[M + H]^+$: 389.1507, Found: 389.1501.

(*R*)-tert-Butyl 2-Nitromethyl-4-oxo-2-(*p*-bromophenyl)-4-(*pyridin-2-yl*) Butanoate (**3ah**). White solid, Mp: 144–146 °C, 83 mg, 93% yield. $[\alpha]_D^{20} = +68.5$ (*c* 0.50, CH₂Cl₂); 99% *ee*, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 95:5, 0.6 mL/min, 254 nm; *t* (minor) = 15.42 min, *t* (major) = 24.64 min]; ¹H NMR (300 MHz, CDCl₃) δ 8.74–8.70 (m, 1H), 8.05 (dt, *J* = 7.9, 1.0 Hz, 1H), 7.86 (td, *J* = 7.7, 1.7 Hz, 1H), 7.56–7.47 (m, 3H), 7.39–7.30 (m, 2H), 5.39–5.23 (m, 2H), 4.48 (d, *J* = 19.2 Hz, 1H), 4.20 (dd, *J* = 19.2, 0.7 Hz, 1H), 1.36 (*s*, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 198.6, 169.8, 152.8, 149.1, 137.0, 136.8, 132.1, 127.7, 127.6, 122.4, 121.7, 83.0, 79.4, 51.1, 40.2, 27.5; ESI-HRMS Calcd for C₂₀H₂₂BrN₂O₅ [M + H]⁺: 449.0707, Found: 449.0708.

(*R*)-tert-Butyl 2-Nitromethyl-4-oxo-2-(*p*-trifluoromethylphenyl)-4-(*pyridin-2-yl*) Butanoate (**3ai**). White solid, Mp: 138–140 °C, 82 mg, 94% yield. $[\alpha]_{D}^{20} = +63.5$ (*c* 0.40, CH₂Cl₂); 97% *ee*, determined by HPLC analysis [Daicel Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 90:10, 1.0 mL/min, 254 nm; *t* (minor) = 8.92 min, *t* (major) = 11.52 min]; ¹H NMR (300 MHz, CDCl₃) δ 8.76–8.70 (m, 1H), 8.05 (dt, *J* = 7.9, 1.1 Hz, 1H), 7.87 (td, *J* = 7.7, 1.7 Hz, 1H), 7.63 (q, *J* = 8.6 Hz, 4H), 7.57–7.51 (m, 1H), 5.39 (d, *J* = 12.6 Hz, 1H), 5.32 (dd, *J* = 12.6, 0.8 Hz, 1H), 4.53 (d, *J* = 19.2 Hz, 1H), 4.25 (dd, *J* = 19.2, 0.8 Hz, 1H), 1.37 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 198.5, 169.6, 152.7, 149.1, 141.7, 137.0, 130.4 (q, *J*_{C-F} = 32.8 Hz), 127.7, 126.5, 125.9 (q, *J*_{C-F} = 3.6 Hz), 123.8 (q, *J*_{C-F} = 272.1 Hz), 121.7, 83.3, 79.4, 51.4, 40.2, 27.5; ESI-HRMS Calcd for C₂₁H₂₂F₃N₂O₅ [M + H]⁺: 439.1475, Found: 439.14754.

(*R*)-tert-Butyl 2-Nitromethyl-4-oxo-2-(*p*-nitrophenyl)-4-(*pyridin*-2-*yl*) Butanoate (**3***aj*). Yellow solid, Mp: 133–135 °C, 81 mg, 97% yield. $[\alpha]_{D}^{20} = +62.7$ (*c* 0.70, CH₂Cl₂); 97% *ee*, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 80:20, 1.0 mL/min, 254 nm; *t* (minor) = 9.17 min, *t* (major) = 14.04 min]; ¹H NMR (300 MHz, CDCl₃) δ 8.73 (dd, *J* = 3.9, 0.8 Hz, 1H), 8.30–8.21 (m, 2H), 8.05 (d, *J* = 7.8 Hz, 1H), 7.88 (td, *J* = 7.8, 1.7 Hz, 1H), 7.72–7.63 (m, 2H), 7.58–7.51 (m, 1H), 5.37 (ABd, *J* = 12.7 Hz, 1H), 5.36 (ABd, *J* = 12.6 Hz, 1H), 4.52 (d, *J* = 19.2 Hz, 1H), 4.26 (d, *J* = 19.2 Hz, 1H), 1.37 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 198.2, 169.2, 152.6, 149.2, 147.6, 144.9, 137.0, 127.8, 127.2, 124.0, 121.8, 83.7, 79.2, 51.6, 40.3, 27.5; ESI-HRMS Calcd for C₂₀H₂₂N₃O₇ [M + H]⁺: 416.1452, Found: 416.1449.

(*S*)-tert-Butyl 2-Nitromethyl-4-oxo-2-(2-furyl)-4-(pyridin-2-yl) Butanoate (**3ak**). White solid, Mp: 82–83 °C, 66 mg, 92% yield. $[\alpha]_{D}^{20} = +36.1 (c 0.98, CH_2Cl_2); 95\%$ ee, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 95:5, 0.8 mL/ min, 254 nm; t (major) = 11.21 min, t (minor) = 18.32 min]; ¹H NMR (300 MHz, CDCl₃) δ 8.70 (d, *J* = 4.6 Hz, 1H), 8.04 (d, *J* = 7.8 Hz, 1H), 7.85 (td, *J* = 7.7, 1.7 Hz, 1H), 7.56–7.47 (m, 1H), 7.40 (d, *J* = 1.2 Hz, 1H), 6.45–6.33 (m, 2H), 5.39–5.24 (m, 2H), 4.34–4.14 (m, 2H), 1.42 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 198.1, 167.9, 152.8, 150.5, 149.1, 142.7, 136.9, 127.6, 121.7, 110.7, 108.0, 83.2, 77.2, 49.0, 39.6, 27.6; ESI-HRMS Calcd for C₁₈H₂₁N₂O₆ [M + H]⁺: 361.1394, Found: 361.1394.

(*R*)-tert-Butyl 2-Nitromethyl-4-oxo-2-(2-thienyl)-4-(pyridin-2-yl) Butanoate (**3a**l). White solid, Mp: 77–79 °C, 72 mg, 96% yield. $[\alpha]_{D}^{20} = +58.5$ (*c* 0.52, CH₂Cl₂); 96% *ee*, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 80:20, 1.0 mL/ min, 254 nm; *t* (minor) = 5.90 min, *t* (major) = 9.15 min]; ¹H NMR (300 MHz, CDCl₃) δ 8.78–8.63 (m, 1H), 8.03 (d, *J* = 7.9 Hz, 1H), 7.84 (td, *J* = 7.7, 1.4 Hz, 1H), 7.52–7.47 (m, 1H), 7.32–7.22 (m, 1H), 7.13 (d, *J* = 3.6 Hz, 1H), 6.98 (dd, *J* = 4.9, 3.9 Hz, 1H), 5.39 (ABd, *J* = 12.4 Hz, 1H), 5.34 (ABd, *J* = 12.4 Hz, 1H), 4.50 (d, *J* = 19.2 Hz, 1H), 4.29 (d, *J* = 19.2 Hz, 1H), 1.41 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 198.3, 169.1, 152.7, 149.1, 141.1, 136.8, 127.5, 126.9, 125.4, 125.4, 121.6, 83.2, 79.7, 49.9, 41.6, 27.5; ESI-HRMS Calcd for C₁₈H₂₁N₂O₃S [M + H]⁺: 377.1166, Found: 377.1162.

(*R*)-tert-Butyl 2-Nitromethyl-4-oxo-2-styryl-4-(pyridin-2-yl) Butanoate (**3am**). Light yellow solid, Mp: 82–84 °C, 75 mg, 95% yield. $[\alpha]_{D}^{20} = +51.8$ (c 1.0, CH₂Cl₂); 95% ee, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 90:10, 1.0 mL/min, 254 nm; t (minor) = 7.41 min, t (major) = 8.27 min]; ¹H NMR (300 MHz, CDCl₃) δ 8.70 (dd, *J* = 4.7, 0.6 Hz, 1H), 8.04 (d, *J* = 7.8 Hz, 1H), 7.85 (td, *J* = 7.7, 1.7 Hz, 1H), 7.52–7.48 (m, 1H), 7.40–7.26 (m, 5H), 6.68 (d, *J* = 16.3 Hz, 1H), 6.36 (d, *J* = 16.3 Hz, 1H), 5.18 (ABd, *J* = 12.3 Hz, 2H), 5.14 (ABd, *J* = 12.3 Hz, 2H), 4.06 (s, 2H), 1.45 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 198.6, 169.7, 152.9, 149.0, 136.9, 136.1, 132.1, 128.6, 128.2, 127.5, 127.0, 126.6, 121.7, 82.9, 78.7, 49.7, 40.9, 27.7; ESI-HRMS Calcd for C₂₂H₂₅N₂O₅ [M + H]⁺: 397.1757, Found: 397.1754.

(5)-tert-Butyl 2-Nitromethyl-4-oxo-2-methyl)-4-(pyridin-2-yl) Butanoate (**3an**). White solid, Mp: 98–100 °C, 58 mg, 95% yield. $[\alpha]_D^{20} = -10.0 (c 0.60, CH_2Cl_2); 66% ee, determined by HPLC analysis$ [Daicel Chiralcel OD-H column,*n*-hexane/*i*-PrOH = 95:5, 0.8 mL/min, 254 nm;*t*(minor) = 9.42 min,*t*(major) = 10.20 min]; ¹H NMR $(300 MHz, CDCl₃) <math>\delta$ 8.69–8.67 (m, 1H), 8.03 (dt, *J* = 7.9, 1.1 Hz, 1H), 7.85 (td, *J* = 7.7, 1.7 Hz, 1H), 7.52–7.46 (m, 1H), 4.97 (d, *J* = 11.9 Hz, 1H), 4.84 (d, *J* = 11.9 Hz, 1H), 3.76 (ABd, *J* = 11.9 Hz, 1H), 3.74 (ABd, *J* = 11.9 Hz, 1H), 1.45 (s, 3H), 1.44 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 198.7, 172.1, 152.9, 149.0, 136.9, 127.4, 121.6, 82.2, 79.8, 44.2, 42.3, 27.7, 22.2; ESI-HRMS Calcd for C₁₅H₂₁N₂O₅ [M + H]⁺: 309.1445, Found: 309.1442.

(S)-tert-Butyl 2-Nitromethyl-4-oxo-2-heptyl-4-(pyridin-2-yl) Butanoate (**3ao**). Colorless oil, 73 mg, 93% yield. $[\alpha]_{D}^{20} = -8.3$ (c 1.43, CH₂Cl₂); 43% ee, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 95:5, 0.8 mL/min, 254 nm; t (major) = 6.25 min, t (minor) = 6.82 min]; ¹H NMR (300 MHz, CDCl₃) δ 8.70–8.66 (m, 1H), 8.03 (dt, *J* = 7.9, 1.1 Hz, 1H), 7.84 (td, *J* = 7.7, 1.7 Hz, 1H), 7.52–7.47 (m, 1H), 5.03 (ABd, *J* = 11.9 Hz, 1H), 4.94 (ABd, *J* = 11.9 Hz, 1H), 3.77 (ABd, *J* = 19.3 Hz, 1H), 3.71 (ABd, *J* = 19.4 Hz, 1H), 1.80–1.64 (m, 2H), 1.45 (s, 9H), 1.27 (s, 10H), 0.87 (t, *J* = 6.7 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 198.9, 171.4, 153.0, 149.0, 136.8, 127.4, 121.6, 82.2, 47.6, 41.5, 35.6, 31.6, 29.5, 28.8, 27.8, 23.5, 22.5, 14.0; ESI-HRMS Calcd for C₂₁H₃₃N₂O₅ [M + H]⁺: 393.2384, Found: 393.2384.

(S)-tert-Butyl 2-Nitromethyl-4-oxo-2-cyclohexyl-4-(pyridin-2-yl) Butanoate (**3ap**). White solid, mp: 78–80 °C, 63 mg, 84% yield; $[\alpha]_D^{20} = -25.2$ (c 0.65, CH₂Cl₂), 94% *ee*, determined by HPLC analysis [Daicel Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 90:10, 0.5 mL/ min, 254 nm; *t* (minor) = 9.31 min, *t* (major) = 13.3 min]; ¹H NMR (300 MHz, CDCl₃) δ 8.68 (d, *J* = 4.1 Hz, 1H), 8.02 (d, *J* = 7.8 Hz, 1H), 7.83 (td, *J* = 7.7, 1.7 Hz, 1H), 7.51–7.41 (m, 1H), 5.06 (s, 2H), 3.96–3.71 (m, 2H), 2.02–1.63 (m, 6H), 1.46 (s, 9H), 1.30–1.00 (m, SH); ¹³C NMR (75 MHz, CDCl₃) δ 199.5, 170.4, 153.2, 148.9, 136.8, 127.3, 121.6, 82.3, 75.8, 50.8, 42.7, 39.4, 27.9, 27.9, 27.8, 26.8, 26.2; ESI-HRMS Calcd for C₂₀H₂₈N₂O₅ [M + H]⁺: 377.2071, Found: 377.2068.

(*R*)-tert-Butyl 2-Nitromethyl-4-oxo-2-phenyl-4-(5-methylpyridin-2-yl) Butanoate (**3bd**). White solid, Mp: 119–121 °C, 69 mg, 90% yield. $[\alpha]_{D}^{20} = +62.3$ (*c* 0.53, CH₂Cl₂); 93% *ee*, determined by HPLC analysis [Daicel Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 80:20, 0.8 mL/min, 254 nm; *t* (minor) = 9.47 min, *t* (major) = 11.18 min]; ¹H NMR (300 MHz, CDCl₃) δ 8.58–8.49 (m, 1H), 7.96 (d, *J* = 7.9 Hz, 1H), 7.69–7.59 (m, 1H), 7.51–7.28 (m, 5H), 5.38–5.27 (m, 2H), 4.51 (d, *J* = 19.2 Hz, 1H), 4.21 (d, *J* = 19.1 Hz, 1H), 2.44 (s, 3H), 1.36 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 198.6, 170.3, 150.8, 149.5, 138.0, 137.7, 137.2, 128.9, 128.1, 125.9, 121.4, 82.6, 79.8, 51.4, 40.2, 27.5, 18.7; ESI-HRMS Calcd for C₂₁H₂₅N₂O₅ [M + H]⁺: 385.1758, Found: 385.1755.

(*R*)-tert-Butyl 2-Nitromethyl-4-oxo-2-phenyl-4-(5-bromopyridin-2-yl) Butanoate (**3cd**). Colorless crystal, Mp: 136–137 °C, 84 mg, 94% yield. $[\alpha]_D^{20} = +47.1$ (*c* 0.24, CH₂Cl₂); 98% *ee*, determined by HPLC analysis [Daicel Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 90:10, 1.0 mL/min, 254 nm; *t* (minor) = 10.57 min, *t* (major) = 11.37 min]; ¹H NMR (300 MHz, CDCl₃) δ 8.77 (d, *J* = 1.5 Hz, 1H), 7.97 (dt, *J* = 18.2, 5.2 Hz, 2H), 7.50–7.30 (m, 5H), 5.42–5.23 (m, 2H), 4.50 (d, *J* = 19.3 Hz, 1H), 4.17 (d, *J* = 19.2 Hz, 1H), 1.37 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 198.0, 170.1, 151.2, 150.3, 139.7, 137.4, 128.9, 128.2, 125.8, 122.9, 82.8, 79.6, 51.3, 40.2, 27.5; ESI-HRMS Calcd for C₂₀H₂₂BrN₂O₅ [M + H]⁺: 449.0707, Found: 449.0705. (*R*)-tert-Butyl 2-Nitromethyl-4-oxo-2-phenyl-4-(2-pyrazinyl) Butanoate (**3ed**). White solid, Mp: 75–76 °C, 63 mg, 85% yield. $[\alpha]_{D}^{20} = +18.0 (c 1.23, CH_2Cl_2); 99% ee, determined by HPLC analysis$ [Daicel Chiralcel OD-H column,*n*-hexane/*i*-PrOH = 90:10, 1.0 mL/min, 254 nm; t (major) = 9.39 min, t (minor) = 16.88 min]; ¹H NMR $(300 MHz, CDCl₃) <math>\delta$ 9.24 (d, *J* = 1.4 Hz, 1H), 8.80 (d, *J* = 2.4 Hz, 1H), 8.68 (dd, *J* = 2.4, 1.5 Hz, 1H), 7.49–7.29 (m, 5H), 5.36 (d, *J* = 12.5 Hz, 2H), 4.52 (d, *J* = 19.3 Hz, 1H), 4.17 (d, *J* = 19.3 Hz, 1H), 1.39 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 198.4, 169.9, 148.2, 147.2, 143.6, 143.4, 137.3, 129.0, 128.3, 125.7, 83.5, 79.4, 51.3, 40.3, 27.5; ESI-HRMS Calcd for C₁₉H₂₂N₃O₅ [M + H]⁺: 372.1554, Found: 372.1550.

(*R*)-tert-Butyl 2-Nitromethyl-4-oxo-2-phenyl-4-(pyrimidin-2-yl) Butanoate (**3fd**). Colorless oil, 64 mg, 86% yield. $[\alpha]_D^{20} = +69.1$ (*c* 0.55, CH₂Cl₂); 93% *ee*, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 80:20, 1.0 mL/min, 254 nm; *t* (minor) = 14.26 min, *t* (major) = 18.86 min]; ¹H NMR (300 MHz, CDCl₃) δ 9.00–8.92 (m, 2H), 7.55–7.27 (m, 7H), 5.35 (s, 2H), 4.58 (d, *J* = 19.4 Hz, 1H), 4.24 (d, *J* = 19.3 Hz, 1H), 1.42 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 196.5, 169.8, 159.5, 157.6, 137.3, 128.9, 128.2, 125.7, 123.3, 83.1, 79.3, 51.4, 41.5, 27.5; ESI-HRMS Calcd for C₁₉H₂₂N₃O₅ [M + H]⁺: 372.1554, Found: 372.1551.

(*R*)-tert-Butyl 2-Nitromethyl-4-oxo-2-phenyl-4-(2-quinolyl) Butanoate (**3gd**). Colorless oil, 82 mg, 97% yield. $[\alpha]_D^{20} = +36.4$ (*c* 0.55, CH₂Cl₂); 99% *ee*, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 90:10, 1.0 mL/min, 254 nm; *t* (minor) = 6.86 min, *t* (major) = 8.39 min]; ¹H NMR (300 MHz, CDCl₃) δ 8.26 (d, *J* = 8.4 Hz, 2H), 8.11 (d, *J* = 8.5 Hz, 1H), 7.88–7.76 (m, 2H), 7.70–7.59 (m, 1H), 7.58–7.48 (m, 2H), 7.45–7.30 (m, 3H), 5.43 (ABd, *J* = 12.4 Hz, 1H), 5.40 (ABd, *J* = 12.5 Hz, 1H), 4.77 (d, *J* = 19.2 Hz, 1H), 4.41 (d, *J* = 19.2 Hz, 1H), 1.38 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 199.2, 170.3, 152.5, 147.1, 137.7, 137.0, 130.7, 130.1, 129.7, 128.9, 128.7, 128.1, 127.6, 125.9, 117.8, 82.7, 79.7, 51.6, 40.0, 27.5; ESI-HRMS Calcd for C₂₄H₂₅N₂O₅ [M + H]⁺: 421.1758, Found: 421.1755.

(*R*)-tert-Butyl 2-Nitromethyl-4-oxo-2-phenyl-4-(2-quinoxalinyl) Butanoate (**3hd**). Light yellow oil, 76 mg, 90% yield. $[\alpha]_D^{20} = +41.2$ (*c* 0.89, CH₂Cl₂); 98% *ee*, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 90:10, 1.0 mL/min, 254 nm; *t* (minor) = 8.72 min, *t* (major) = 20.90 min]; ¹H NMR (300 MHz, CDCl₃) δ 9.49 (s, 1H), 8.40–8.06 (m, 2H), 8.05–7.77 (m, 2H), 7.53–7.29 (m, 5H), 5.40 (s, 2H), 4.71 (d, *J* = 19.2 Hz, 1H), 4.31 (d, *J* = 19.2 Hz, 1H), 1.41 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 198.6, 170.0, 145.9, 144.1, 142.7, 140.9, 137.4, 132.4, 130.8, 130.5, 129.4, 129.0, 128.2, 125.8, 83.0, 79.4, 51.4, 40.1, 27.5; ESI-HRMS Calcd for C₂₃H₂₃N₃NaO₅ [M + Na]⁺: 444.1530, Found: 444.1534.

(*R*)-tert-Butyl 2-Nitromethyl-4-oxo-2-phenyl-4-(2-oxazolyl) Butanoate (**3id**). White solid, Mp: 85–86 °C, 62 mg, 86% yield. $[\alpha]_{D}^{20} = +66.2$ (*c* 0.60, CH₂Cl₂); 98% *ee*, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 80:20, 1.0 mL/ min, 254 nm; *t* (minor) = 7.83 min, *t* (major) = 12.16 min]; ¹H NMR (300 MHz, CDCl₃) δ 7.85 (d, *J* = 0.5 Hz, 1H), 7.43–7.29 (m, 6H), 5.39–5.25 (m, 2H), 4.38 (d, *J* = 18.9 Hz, 1H), 4.09 (d, *J* = 18.9 Hz, 1H), 1.40 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 185.2, 169.5, 157.5, 142.0, 136.8, 129.3, 129.0, 128.4, 125.6, 83.3, 79.1, 51.3, 41.3, 27.5; ESI-HRMS Calcd for C₁₈H₂₁N₂O₆ [M + H]⁺: 361.1394, Found: 361.1389.

(*R*)-tert-Butyl 2-Nitromethyl-4-oxo-2-phenyl-4-(2-thiazolyl) Butanoate (**3***j***d**). Light yellow solid, Mp: 58–60 °C, 72 mg, 96% yield. $[\alpha]_{D}^{20} = +140.2$ (*c* 0.55, CH₂Cl₂); >99% *ee*, determined by HPLC analysis [Daicel Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 90:10, 1.0 mL/min, 254 nm; *t* (major) = 11.66 min, *t* (minor) = 13.27 min]; ¹H NMR (300 MHz, CDCl₃) δ 8.03 (d, *J* = 3.0 Hz, 1H), 7.71 (d, *J* = 3.0 Hz, 1H), 7.45–7.26 (m, 5H), 5.35 (s, 2H), 4.47 (d, *J* = 18.9 Hz, 1H), 4.20 (d, *J* = 18.9 Hz, 1H), 1.38 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 190.9, 169.7, 166.1, 144.9, 137.1, 1289.0, 128.3, 126.6, 125.7, 125.6, 83.1, 79.4, 51.3, 40.7, 27.5; ESI-HRMS Calcd for C₁₈H₂₁N₂O₅S [M + H]⁺: 377.1166, Found: 377.1164.

(*R*)-tert-Butyl 2-Nitromethyl-4-oxo-2-phenyl-4-(2-benzothiazolyl) Butanoate (**3kd**). White solid, Mp: 90–91 °C, 79 mg, 92% yield. $[\alpha]_{10}^{20}$ = +42.0 (*c* 0.75, CH₂Cl₂); 99% *ee*, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 90:10, 1.0 mL/ min, 254 nm; *t* (minor) = 6.80 min, *t* (major) = 8.19 min]; ¹H NMR (300 MHz, CDCl₃) δ 8.26–8.19 (m, 1H), 8.01–7.94 (m, 1H), 7.63– 7.50 (m, 2H), 7.50–7.43 (m, 2H), 7.43–7.29 (m, 3H), 5.38 (s, 2H), 4.61 (d, *J* = 19.0 Hz, 1H), 4.31 (d, *J* = 19.0 Hz, 1H), 1.39 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 192.5, 169.7, 165.4, 153.4, 137.3, 137.1, 129.0, 128.3, 127.9, 127.1, 125.8, 125.6, 122.4, 83.2, 79.4, 51.5, 41.0, 27.5; ESI-HRMS Calcd for C₂₂H₂₃N₂O₅S [M + H]⁺: 427.1322, Found: 427.1319.

(*R*)-tert-Butyl 2-Nitromethyl-4-oxo-2-phenyl-4-(*N*-methyl-2imidazolyl) Butanoate (**3**Id). White solid, Mp: 120–121 °C, 69 mg, 92% yield. $[\alpha]_D^{20} = +77.6$ (c 0.41, CH₂Cl₂); >99% *ee*, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 90:10, 1.0 mL/min, 254 nm; t (minor) = 10.35 min, t (major) = 13.18 min]; ¹H NMR (300 MHz, CDCl₃) δ 7.45–7.27 (m, SH), 7.17 (*s*, 1H), 7.05 (*s*, 1H), 5.32 (ABd, J = 12.3 Hz, 1H), 5.29 (ABd, J = 12.4 Hz, 1H), 4.42 (d, J = 18.7 Hz, 1H), 4.16 (d, J = 18.7 Hz, 1H), 3.98 (*s*, 3H), 1.37 (*s*, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 189.4, 170.2, 142.5, 137.3, 129.4, 128.8, 128.1, 127.3, 125.8, 82.6, 79.8, 51.3, 41.0, 36.0, 27.5; ESI-HRMS Calcd for C₁₉H₂₄N₃O₅ [M + H]⁺: 374.1710, Found: 374.1707.

(*S*)-tert-Butyl 2-Nitromethyl-4-oxo-2-furyl-4-(*N*-methyl-2-imidazolyl) Butanoate (**3***lk*). White solid, Mp: 110–111 °C, 62 mg, 85% yield. $[\alpha]_{D}^{20} = +41.9$ (*c* 0.42, CH₂Cl₂); >99% *ee*, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 80:20, 1.0 mL/min, 254 nm; *t* (minor) = 9.47 min, *t* (major) = 11.96 min]; ¹H NMR (300 MHz, CDCl₃) δ 7.39 (d, *J* = 1.2 Hz, 1H), 7.17 (s, 1H), 7.06 (s, 1H), 6.47–6.24 (m, 2H), 5.32 (ABd, *J* = 12.3 Hz, 1H), 5.26 (ABd, *J* = 12.3 Hz, 1H), 4.12 (d, *J* = 1.5 Hz, 2H), 3.99 (s, 3H), 1.42 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 188.6, 167.9, 150.2, 142.6, 142.3, 129.4, 127.3, 110.7, 108.0, 83.1, 77.4, 49.0, 40.4, 36.1, 27.6; ESI-HRMS Calcd for C₁₇H₂₂N₃O₆ [M + H]⁺: 364.1501, Found: 364.1501.

(*R*)-tert-Butyl 2-Nitromethyl-4-oxo-2-thienyl-4-(*N*-methyl-2imidazolyl) Butanoate (**3**II). White solid, Mp: 109–110 °C, 67 mg, 88% yield. $[\alpha]_D^{20} = +49.4$ (*c* 0.5, CH₂Cl₂); >99% *ee*, determined by HPLC analysis [Daicel Chiralcel AS-H column, *n*-hexane/*i*-PrOH = 90:10, 1.0 mL/min, 254 nm; *t* (minor) = 14.04 min, *t* (major) = 15.84 min]; ¹H NMR (300 MHz, CDCl₃) δ 7.28 (dd, *J* = 5.2, 1.1 Hz, 1H), 7.19 (d, *J* = 0.8 Hz, 1H), 7.11 (dd, *J* = 3.7, 1.2 Hz, 1H), 7.07 (s, 1H), 6.98 (dd, *J* = 5.1, 3.7 Hz, 1H), 5.44–5.22 (m, 2H), 4.38 (d, *J* = 18.7 Hz, 1H), 4.21 (d, *J* = 18.6 Hz, 1H), 3.99 (s, 3H), 1.42 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 188.8, 169.1, 142.4, 140.8, 129.5, 127.3, 126.9, 125.5, 125.4, 83.2, 79.8, 49.9, 42.4, 36.1, 27.5; ESI-HRMS Calcd for C₁₇H₂₂N₃O₄S [M + H]⁺: 380.1275, Found: 380.1271.

(*R*)-tert-Butyl 2-Nitromethyl-4-oxo-2-phenyl-4-(*N*-Bn-2-benzimidazolyl) Butanoate (**3md**). White solid, Mp: 119–120 °C, 85 mg, 85% yield. $[\alpha]_{20}^{20}$ = +45.6 (*c* 0.35, CH₂Cl₂); 99% *ee*, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 80:20, 1.0 mL/min, 254 nm; *t* (minor) = 8.46 min, *t* (major) = 15.77 min]; ¹H NMR (300 MHz, CDCl₃) δ 8.02–7.91 (m, 1H), 7.50–7.28 (m, 8H), 7.26–7.18 (m, 3H), 7.07 (d, *J* = 6.0 Hz, 2H), 5.92 (ABd, *J* = 15.8 Hz, 1H), 5.81 (ABd, *J* = 15.8 Hz, 1H), 5.26 (s, 2H), 4.65 (d, *J* = 19.2 Hz, 1H), 4.37 (d, *J* = 19.0 Hz, 1H), 1.26 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 192.3, 170.0, 145.1, 141.8, 137.1, 136.7, 136.4, 128.9, 128.7, 128.2, 127.7, 126.5, 125.9, 124.1, 122.2, 111.1, 82.8, 79.8, 51.3, 48.6, 42.2, 27.4; ESI-HRMS Calcd for C₂₉H₃₀N₃O₅ [M + H]⁺: 500.2180, Found: 500.2179.

(*R*)-5-(2-Pyridinyl)-3-phenyl-3-(t-butyloxy carbonyl)-3,4-dihydro-2H-pyrrole (4). To the dry round-bottom flask was added **3ad** (60 mg, 0.16 mmol, 97% ee), THF (2 mL), MeOH (1 mL), AcOH (144 μ L, 16 equiv), and Fe powder (403 mg, 45 equiv) successively at room temperature, and the resulting mixture was refluxed for 12 h under nitrogen atmosphere. After cooling to room temperature, a solution of saturated NaHCO₃ (aq. 10 mL) was added and stirred for another 30 min at room temperature, and the reaction mixture was filtrated through Celite and washed with ethyl acetate (20 mL). The water layer was extracted with ethyl acetate (20 mL × 3). The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum/ethyl acetate = 95/5) to give (R)-4 (37.1 mg, 71% yield). Light yellow oil, $[\alpha]_{D}^{20} = -10.9$ (c 0.38 CH₂Cl₂); 98% *ee*, determined by HPLC analysis [Daicel Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 90:10, 1.0 mL/min, 254 nm; *t* (minor) = 7.63 min, *t* (major) = 12.27 min]; ¹H NMR (300 MHz, CDCl₃) δ 8.67–8.64 (m, 1H), 8.13 (dt, *J* = 7.9, 1.0 Hz, 1H), 7.73 (td, *J* = 7.7, 1.8 Hz, 1H), 7.37–7.28 (m, 5H), 7.27–7.18 (m, 1H), 5.02 (dt, *J* = 16.6, 1.5 Hz, 1H), 4.43 (dt, *J* = 16.7, 1.9 Hz, 1H), 4.27–4.10 (m, 1H), 3.51 (dt, *J* = 17.9, 1.9 Hz, 1H), 1.35 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 173.6, 173.4, 152.6, 149.0, 142.4, 136.2, 128.4, 126.8, 126.3, 124.7, 121.6, 81.3, 70.5, 58.5, 45.0, 27.6; ESI-HRMS Calcd for C₂₀H₂₃N₂O₂ [M + H]⁺: 323.1754, Found: 323.1752.

(R)-tert-Butyl 2-Nitromethyl-4-hydroxy-2-phenyl-4-(2-pyridinyl) Butanoate (5). To a stirred solution of 3ad (148 mg, 0.4 mmol) in anhydrous MeOH (5 mL) was added NaBH₄ (16 mg, 0.4 mmol) in portions at 0 °C, and stirred for another 15 min. The reaction mixture was treated with a saturated aqueous NH₄Cl solution at 0 °C. The two phases were separated, and the aqueous phase was extracted with ethyl acetate (10 mL \times 3). The combined organic phases were dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography to afford the pure β -nitroacrylic esters 5. Colorless oil, 144 mg, 94% yield (the ratio of diastereomers, 1.4:1), 40% isolated yield for major isomer. $[\alpha]_{D}^{20} = -24.6$ (c 1.0, CH₂Cl₂, major isomer). 97% ee, determined by HPLC analysis [Daicel Chiralcel AS-H column, n-hexane/i-PrOH = 88:22, 1.0 mL/min, 254 nm; t (minor) = 7.77 min, t (major) = 9.12 min]. (major isomer) ¹H NMR (300 MHz, CDCl₂) δ 8.46 (d, I = 4.5 Hz, 1H), 7.62 (td, I = 7.7, 1.2 Hz, 1H), 7.48–7.27 (m, 5H), 7.22–6.96 (m, 2H), 5.84 (d, J = 14.4 Hz, 1H), 5.37 (d, J = 14.4 Hz, 1H), 4.67 (s, 1H), 4.43 (d, J = 10.4 Hz, 1H), 2.66 (d, J = 14.8 Hz, 1H), 2.44 (dd, J = 15.0, 11.0 Hz, 1H), 1.38 (s, 9H); (major isomer) ¹³C NMR (75 MHz, CDCl₃) δ 171.1, 160.9, 147.9, 138.0, 136.7, 129.0, 127.3, 125.7, 122.4, 120.0, 82.2, 78.0, 68.9, 52.8, 42.7, 27.4; ESI-HRMS Calcd for $C_{20}H_{25}N_2O_5$ [M + H]⁺: 373.1758, Found: 373.1754.

(3R,5S)-5-(2-Pyridinyl)-3-nitromethyl-3-phenyl-dihydrofuran-2one (6). To a 25 mL round-bottom flask were added β -nitroacrylic esters 5 (major isomer, 80 mg, 0.21 mmol), 10 mL of CH₂Cl₂, and 2 mL of TFA at room temperature. The reaction mixture was stirred for 24 h at 30 °C, and then concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum/ethyl acetate, 1:2, (v/v)) to give the lactone 6 (52 mg, 81% yield). White solid, Mp: 58–59 °C, $[\alpha]_D^{20} = +8.7$ (c 0.31, CH₂Cl₂); 99% ee, determined by HPLC analysis [Daicel Chiralcel AS-H column, *n*-hexane/*i*-PrOH = 90:10, 1.0 mL/min, 254 nm; *t* (minor) = 37.24 min, t (major) = 55.44 min]. ¹H NMR (300 MHz, CDCl₃) δ 8.47 (d, J = 4.5 Hz, 1H), 7.43 (td, J = 7.8, 1.6 Hz, 1H), 7.28 (dd, J = 6.7, 3.0 Hz, 2H), 7.19 (dd, J = 9.6, 5.7 Hz, 3H), 7.13-7.02 (m, 2H), 5.75 (dd, J = 8.9, 3.0 Hz, 1H), 4.94 (d, J = 14.2 Hz, 1H), 4.79 (d, J = 14.2 Hz, 1H), 3.51 (dd, J = 13.8, 3.2 Hz, 1H), 3.28 (dd, J = 13.8, 9.0 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 175.3, 157.8, 149.1, 136.4, 134.5, 128.9, 128.5, 126.3, 122.6, 119.8, 80.7, 77.4, 50.6, 37.0. ESI-HRMS Calcd for $C_{16}H_{15}N_2O_4 [M + H]^+$: 299.1026, Found: 299.1024.

(R)-tert-Butyl 4-Methyl 2-(nitromethyl)-2-phenylsuccinate (7). To a 25 mL oven-dried vial under a N2 atmosphere were added 3ld (93 mg, 0.25 mmol), 30 mg of 4 Å MS, and 2.0 mL of acetonitrile. After stirring for 10 min, MeOTf (45 mg, 0.275 mmol) was added. The reaction mixture was stirred for 12 h at room temperature before MeOH (1.0 mL) and DBU (0.1 mL) were added. The reaction was stirred for another 1 h at room temperature. Then, the resulting mixture was separated with water, and the aqueous phase was extracted with CH_2Cl_2 (10 mL \times 3). The combined organic phase was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum/ethyl/acetate, 1/10 (v/v)) to give the succinate 7 (74 mg, 92% yield). White solid, Mp: 80–81 °Č, $[\alpha]_{\rm D}^{20}$ = -62.4 (c 0.50, CH₂Cl₂); >99% ee, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 90:10, 1.0 mL/min, 210 nm; *t* (minor) = 6.31 min, t (major) = 7.45 min; H NMR (300 MHz, 100 MHz) $CDCl_3$) δ 7.40–7.26 (m, 5H), 5.34 (q, J = 13.1 Hz, 2H), 3.68 (s, 3H), 3.44 (ABd, J = 17.2 Hz, 1H), 3.29 (ABd, J = 17.3 Hz, 1H), 1.40 (s,

The Journal of Organic Chemistry

9H); ¹³C NMR (75 MHz, CDCl₃) δ 171.2, 169.6, 136.9, 129.0, 128.3, 125.5, 83.1, 78.8, 51.8, 51.4, 36.9, 27.5; ESI-HRMS Calcd for C₁₆H₂₁NNaO₆ [M + Na]⁺: 346.1261, Found: 346.1263.

(R)-tert-Butyl 5-Oxo-3-phenylpyrrolidine-3-carboxylate (8). To a suspension of succinate 7 (40 mg, 0.12 mmol, major isomer) and NiCl₂·6H₂O (43 mg, 0.18 mmol) in ethanol (2 mL) was added NaBH₄ (68 mg, 1.8 mmol) at 0 °C, and the mixture was stirred for 9 h at room temperature. Then, the reaction mixture was quenched with a solution of saturated aqueous NH4Cl and extracted with CH2Cl2(10 mL \times 3). The organic layers were washed with brine, dried over Na₂SO₄₁ and concentrated under vacuum. The crude product was purified with flash chromatography on silica gel (ethyl acetate/ petroleum ether, 1:1 (v/v)) to afford the lactam 8 (29 mg, 89% yield). White solid, Mp: 122–124 °C, 99.2% ee. $[\alpha]_D^{20} = -8.6$ (c 0.62, CH₂Cl₂); determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 80:20, 1.0 mL/min, 210 nm; *t* (minor) = 6.82 min, t (major) = 8.30 min]; ¹H NMR (300 MHz, CDCl₃) δ 7.40–7.22 (m, 5H), 6.33 (s, 1H), 4.32 (d, J = 9.8 Hz, 1H), 3.61(d, J =9.8 Hz, 1H), 3.27 (d, J = 16.7 Hz, 1H), 2.75 (d, J = 16.7 Hz, 1H), 1.36 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 176.4, 172.0, 140.3, 128.5, 127.3, 125.8, 81.9, 55.0, 50.6, 39.9, 27.4. ESI-HRMS Calcd for $C_{15}H_{20}NO_3 [M + H]^+$: 262.1438, Found: 262.1436.

(R)-tert-Butyl 4-Hydroxy-2-(nitromethyl)-2-phenylbutanoate (9). To a round-bottom flask were added succinate 7 (72 mg, 0.22 mmol) and anhydrous THF (5 mL) under a nitrogen atmosphere, followed by addition of DIBAL-H (0.48 mL in THF, 0.48 mmol) at 0 °C. The reaction mixture was stirred for another 24 h at 0 °C. H₂O (10 mL) was added to the reaction mixture, and extracted with CH2Cl2 (10 mL \times 3). The organic layer was dried over Na₂SO₄, filtered, and concentrated under vacuum, and the crude product was purified with flash chromatography on silica gel (ethyl acetate/petroleum ether, 1:5 (v/v) to afford the product 9. Colorless oil, 55 mg, 85% yield. $[\alpha]_D^{20} =$ +5.0 (c 0.18, CH₂Cl₂); 99.5% ee, determined by HPLC analysis [Daicel Chiralcel OD-H column, n-hexane/i-PrOH = 90:10, 1.0 mL/min, 210 nm; t (major) =11.70 min, t (minor) = 14.96 min]; ¹H NMR (300 MHz, $CDCl_3$) δ 7.41–7.27 (m, 3H), 7.24 (dd, J = 6.8, 1.7 Hz, 2H), 5.33-5.10 (m, 2H), 3.67 (dd, I = 11.1, 5.5 Hz, 1H), 3.49 (s, 1H), 2.60-2.28 (m, 2H), 1.97 (s, 1H), 1.42 (s, 9H); ¹³C NMR (75 MHz, ${\rm CDCl}_3)$ δ 171.3, 137.8, 128.9, 127.9, 125.8, 82.8, 79.5, 58.9, 53.0, 36.4, 27.6; ESI-HRMS Calcd for C₁₅H₂₂NO₅ [M + H]⁺: 296.1492, Found: 296.1485.

ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.7b01014.

Crystallographic data for 3ah (CIF)

X-ray data for compound **3ah**, HPLC data, and ¹H and ¹³C NMR spectra (PDF)

AUTHOR INFORMATION

Corresponding Authors

*E-mail: fubinchem@cau.edu.cn (B.F.). *E-mail: qinzhaohai@263.net (Z.Q.).

ORCID 💿

Zhenhua Zhang: 0000-0002-6579-1670 Bin Fu: 0000-0001-7132-4836

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the National Natural Science Foundation of China (No. 21172255) and the Ministry of Science and Technology of China (No. 2015BAK45B01) for the financial support.

REFERENCES

(1) (a) Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57, 10257–10274. (b) Blacker, J. A., Williams, M. T., Eds. Pharmaceutical Process Development: Current Chemical and Engineering Challenges; Royal Society of Chemistry: Cambridge, U.K., 2011.

(2) Jumde, R. P.; Lanza, F.; Veenstra, M. J.; Harutyunyan, S. R. Science 2016, 352, 433-437.

(3) (a) Liu, Y.; Han, S.-J.; Liu, W.-B.; Stoltz, B. M. Acc. Chem. Res. 2015, 48, 740–751. (b) Tian, L.; Luo, Y.-C.; Hu, X.-Q.; Xu, P.-F. Asian J. Org. Chem. 2016, 5, 580–607. (c) Büschleb, M.; Dorich, S.; Hanessian, S.; Tao, D.; Schenthal, K. B.; Overman, L. E. Angew. Chem., Int. Ed. 2016, 55, 4156–4186. (d) Corey, E. J.; Guzman-Perez, A. Angew. Chem., Int. Ed. 1998, 37, 388–401.

(4) (a) Quasdorf, K. W.; Overman, L. E. Nature 2014, 516, 181–191.
(b) Bella, M.; Gasperi, T. Synthesis 2009, 2009, 1583–1614. (c) Cozzi, P. G.; Hilgraf, R.; Zimmermann, N. Eur. J. Org. Chem. 2007, 2007, 5969–5994.

(5) (a) Kano, T.; Hayashi, Y.; Maruoka, K. J. Am. Chem. Soc. 2013, 135, 7134–7137.
(b) Nerinckx, W.; Vandewalle, M. Tetrahedron: Asymmetry 1990, 1, 265–276.
(c) Overman, L. E.; Larrow, J. F.; Stearns, B. A.; Vance, J. M. Angew. Chem., Int. Ed. 2000, 39, 213–215.
(d) Overman, L. E.; Paone, D. V.; Stearns, B. A. J. Am. Chem. Soc. 1999, 121, 7702–7703.

(6) (a) Zhou, H.; Zhang, L.; Xu, Ch.-M.; Luo, S.-Z. Angew. Chem., Int. Ed. 2015, 54, 12645–12648. (b) Liu, W.-B.; Reeves, C. M.; Virgil, S. C.; Stoltz, B. M. J. Am. Chem. Soc. 2013, 135, 10626–10629. (c) Trost, B. M.; Osipov, M. Angew. Chem., Int. Ed. 2013, 52, 9176–9181. (d) Cheng, Q.; Wang, Y.; You, S.-L. Angew. Chem., Int. Ed. 2016, 55, 3496–3499. (e) Hou, X.-L.; Sun, N. Org. Lett. 2004, 6, 4399–4401. (7) (a) Vuagnoux-d'Augustin, M.; Alexakis, A. Chem. - Eur. J. 2007, 13, 9647–9662. (b) Martin, D.; Kehrli, S.; d'Augustin, M.; Clavier, H.; Mauduit, M.; Alexakis, A. J. Am. Chem. Soc. 2006, 128, 8416–8417. (c) Kikushima, K.; Holder, J. C.; Gatti, M.; Stoltz, B. M. J. Am. Chem. Soc. 2011, 133, 6902–6905.

(8) (a) Wang, B.-M.; Tu, Y.-Q. Acc. Chem. Res. 2011, 44, 1207–1222.
(b) Martin-Castro, A. M. Chem. Rev. 2004, 104, 2939–3002.

(9) Zeng, X.-P.; Cao, Zh.-Y.; Wang, Y.-H.; Zhou, F.; Zhou, J. Chem. Rev. 2016, 116, 7330–7396.

(10) (a) Meninno, S.; Fuoco, T.; Tedesco, C.; Lattanzi, A. Org. Lett.
2014, 16, 4746-4749. (b) Gao, L.-Z.; Kang, B. C.; Ryu, D. H. J. Am. Chem. Soc. 2013, 135, 14556-14559. (c) Esumi, T.; Yamamoto, C.; Tsugawa, Y.; Toyota, M.; Asakawa, Y.; Fukuyama, Y. Org. Lett. 2013, 15, 1898-1901. (d) Li, W.; Tan, F.; Hao, X.-Y.; Wang, G.; Tang, Y.; Liu, X.-H.; Lin, L.-L.; Feng, X. Angew. Chem, Int. Ed. 2015, 54, 1608-1611. (e) Zhao, W.-X.; Wang, Z.-B.; Chu, B.-Y.; Sun, J.-W. Angew. Chem., Int. Ed. 2015, 54, 1910-1913. (f) Zhou, F.-T.; Cheng, G.-J.; Yang, W.-Q.; Long, Y.; Zhang, S.-S.; Wu, Y.-D.; Zhang, X.-H.; Cai, Q. Angew. Chem. 2014, 126, 9709-9713. (g) Park, J. W.; Chen, Z.-W.; Dong, Vy M. J. Am. Chem. Soc. 2016, 138, 3310-3313. (h) Trost, B. M.; Saget, T.; Hung, C. J. Am. Chem. Soc. 2016, 138, 3659-3662. (i) Aikawa, K.; Okamoto, T.; Mikami, K. J. Am. Chem. Soc. 2012, 134, 10329-10332.

(11) (a) Cardillo, G.; Tomasini, C. Chem. Soc. Rev. 1996, 25, 117–128.
(b) Sewald, N. Angew. Chem., Int. Ed. 2003, 42, 5794–5795.
(c) Bhadra, S.; Yamamoto, H. Angew. Chem., Int. Ed. 2016, 55, 13043–13046.

(12) (a) Zhang, F.-G.; Yang, Q.-Q.; Xuan, J.; Lu, H.-H.; Duan, Sh.-W.; Chen, J.-R.; Xiao, W.-J. Org. Lett. **2010**, *12*, 5636–5639. (b) Lu, H.-H.; Zhang, F.-G.; Meng, X.-G.; Duan, Sh.-W.; Xiao, W.-J. Org. Lett. **2009**, *11*, 3946–3949. (c) Weng, J.-Q.; Deng, Q.-M.; Wu, L.; Xu, K.; Wu, H.; Liu, R.-R.; Gao, J.-R.; Jia, Y.-X. Org. Lett. **2014**, *16*, 776–779. (d) Kastl, R.; Wennemers, H. Angew. Chem., Int. Ed. **2013**, *52*, 7228–7232. (e) Chen, L.-A.; Tang, X.; Xi, J.; Xu, W.; Gong, L.; Meggers, E. Angew. Chem., Int. Ed. **2013**, *52*, 14021–14025. (f) Chen, Sh.-W.; Lou, Q.-X.; Ding, Y.-Y.; Zhang, S.-S.; Hu, W.-H.; Zhao, J.-L. Adv. Synth. Catal. **2015**, *357*, 2437–2441.

(13) (a) Kawai, H.; Yuan, Z.; Kitayama, T.; Tokunaga, E.; Shibata, N. Angew. Chem., Int. Ed. **2013**, 52, 5575–5579. (b) Gao, J.-R.; Wu, H.; Xiang, B.; Yu, W.-B.; Han, L.; Jia, Y.-X. J. Am. Chem. Soc. **2013**, 135,

The Journal of Organic Chemistry

2983–2986. (c) Chen, Q.; Wang, G.-Q.; Jiang, X.-X.; Xu, Z.-Q.; Lin, L.; Wang, R. Org. Lett. **2014**, *16*, 1394–1397. (d) Wu, H.; Liu, R.-R.; Shen, C.; Zhang, M.-D.; Gao, J.-R.; Jia, Y.-X. Org. Chem. Front. **2015**, *2*, 124–128. (e) Zhu, Y.-Y.; Li, X.-Y.; Chen, Q.; Su, J.-H.; Jia, F.-J.; Qiu, S.; Ma, M.-X.; Sun, Q.-T.; Yan, W.-J.; Wang, K.-R.; Wang, R. Org. Lett. **2015**, *17*, 3826–3829. (f) Sanz-Marco, A.; Blay, G.; Vila, C.; Pedro, J. R. Org. Lett. **2016**, *18*, 3538–3541.

(14) Das, J. P.; Marek, I. Chem. Commun. 2011, 47, 4593-4623.

(15) Hou, X.-H.; Ma, H.-L.; Zhang, Zh.-H.; Xie, L.; Qin, Zh.-H.; Fu, B. Chem. Commun. **2016**, *52*, 1470–1473.

(16) Simpson, A. J.; Lam, H. W. Org. Lett. 2013, 15, 2586-2589.

(17) Selected recent reactions of N-substituted imidazole compounds: (a) Huo, H.-H.; Harms, K.; Meggers, E. J. Am. Chem. Soc. 2016, 138, 6936-6939. (b) Yang, D.-X.; Wang, L.-Q.; Li, D.; Han, F.-X.; Zhao, D.-P.; Wang, R. Chem. - Eur. J. 2015, 21, 1458-1462. (c) Drissi-Amraoui, S.; Morin, M. S.; Crévisy, C.; Baslé, O.; Marcia de Figueiredo, R.; Mauduit, M.; Campagne, J. M. Angew. Chem., Int. Ed. 2015, 54, 11830-11834. (d) Huo, H.-H.; Fu, C.; Harms, K.; Meggers, E. J. Am. Chem. Soc. 2014, 136, 2990-2993.

(18) (a) Evans, D. A.; Fandrick, K. R.; Song, H.-J. Org. Lett. 2006, 8, 3351–3354. (b) Evans, D. A.; Fandrick, K. R.; Song, H.-J. J. Am. Chem. Soc. 2005, 127, 8942–8943.

(19) For selected examples involving succinic acid derivatives bearing a tertiary carbon stereocenter: (a) Wang, M. H.; Cohen, D. T.; Schwamb, C. B.; Mishra, R. K.; Scheidt, K. A. J. Am. Chem. Soc. 2015, 137, 5891–5894. (b) Bernasconi, M.; Müller, M. A.; Pfaltz, A. Angew. Chem., Int. Ed. 2014, 53, 5385–5388. (c) Sibi, M. P.; Hasegawa, H. Org. Lett. 2002, 4, 3347–3349. (d) Evans, D. A.; Wu, L. D.; Wiener, J. J.; Johnson, J. S.; Ripin, D. H.; Tedrow, J. S. J. Org. Chem. 1999, 64, 6411–6417.

(20) Juaristi, E., Soloshonok, V. A., Eds. *Enantioselective Synthesis of* β -*Amino Acids*, 2nd ed.; Blackwell Science Publishers: Oxford, U.K., 2005.

(21) (a) Wilsily, A.; Fillion, E. Org. Lett. 2008, 10, 2801–2804.
(b) Shintani, R.; Duan, W.-L.; Hayashi, T. J. Am. Chem. Soc. 2006, 128, 5628–5629.

(22) Swiderska, M. A.; Stewart, J. D. Org. Lett. 2006, 8, 6131–6133.
(23) Crystallographic data for 3ah has been deposited with the Cambridge Crystallographic Data Centre as deposition number CCDC 1448483. For details, see the Supporting Information.

(24) For some recent reports of Ni(II) as an efficient catalyst in asymmetric catalysis, see: (a) Zhou, Y.-Y.; Wang, L.-J.; Li, J.; Sun, X.-L.; Tang, Y. J. Am. Chem. Soc. 2012, 134, 9066–9069. (b) Zhang, J.-Q.; Xiao, Y.-J.; Zhang, J. Adv. Synth. Catal. 2013, 355, 2793–2797. (c) Suga, H.; Furihata, Y.; Sakamoto, A.; Itoh, K.; Okumura, Y.; Tsuchida, T.; Kakehi, A.; Baba, T. J. Org. Chem. 2011, 76, 7377–7387. (d) Livieri, A.; Boiocchi, M.; Desimoni, G.; Faita, G. Chem. - Eur. J. 2011, 17, 516–520. (e) Han, Y.-Y.; Wu, Z.-J.; Chen, W.-B.; Du, X.-L.; Zhang, X.-M.; Yuan, W.-C. Org. Lett. 2011, 13, 5064–5067.